
A. Håkansson et al. (Eds.): KES-AMSTA 2009, LNAI 5559, pp. 80–89, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Agent-Based Modeling of a Mobile Robot to Detect and
Follow Humans

José M. Gascueña and Antonio Fernández-Caballero

Universidad de Castilla-La Mancha, Escuela de Ingenieros Industriales de Albacete &
Instituto de Investigación en Informática de Albacete, 02071-Albacete, Spain

{jmanuel,caballer}@dsi.uclm.es

Abstract. This paper introduces a multi-agent system (MAS) approach using
the detailed process provided by Prometheus methodology for the design of a
moving robot application for the detection and following of humans. Our con-
jecture is that complex autonomous robotic systems have to be fully modeled in
their initial design stages by means of agent-based technology. The application
has been completely modeled with the Prometheus Design Tool (PDT), which
offers full support to Prometheus methodology.

Keywords: Multi-agent systems, Agent-based software engineering, Mobile
robots, Surveillance.

1 Introduction

At present, there are many applications that benefit from the use of mobile robots that
incorporate the capability of following persons. Some examples are carrying objects
that people working in hospitals, airports, museums, or domestic environments need;
or detecting and following intruders. In literature, several studies that use information
picked up by devices mounted on a robot to track humans can be found. It is usual to
use a camera to detect faces or color blobs, or to follow a contour [13]. Other re-
searchers implement the following task by using information provided by a laser [7].
A hybrid approach is considered in [10], [16], where visual information provided by a
camera and information gotten with a laser are used jointly. In addition to the vision
sensor, a voice recognition sensor is mounted on the mobile robot in [8] to follow
humans in an outdoor environment. Another option involves placing a tracking device
on humans [2]. For example two LEDs that are detected by a camera mounted on a
robot; or an ultrasonic transponder that allows a robot ultrasonic sensor to distinguish
between persons and obstacles.

The works cited previously do not use a methodology that allows requirements
capture and design before carrying out the application implementation. Our proposal
is to introduce Software Engineering techniques, as these produce a very well docu-
mented application from requirements up to implementation [14], [6]. Moreover,
using a methodology allows sharing the same terminology, annotation, models, and
development processes [1].

 Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans 81

Like humans, robots need a certain level of autonomy, reactivity, pro-activity and
social ability to perform their tasks. These characteristics are often cited as a rationale
for adopting agent technology [17]; so an agent-oriented methodology will be useful
for modeling these kinds of systems. In the last few years a great number of agent-
oriented methodologies have been proposed, but only some of them have been applied
to develop robotic applications. As far as we know, the only agent-oriented method-
ologies used to analyze and design a robotic system are Cassiopeia [3], MaSE [5],
PASSI [4], and the methodology proposed in [9] that uses concepts from GAIA, Mas-
CommonKADS and MaSe methodologies. INGENIAS has been tested in an ad-
vanced surveillance system composed of different types of sensors [12].

This paper presents how the detailed process provided by Prometheus methodology
has been used to design a robotics application, namely the detection and following of
a person, using a multi-agent system (MAS) approach. We have chosen this method-
ology because it provides a collection of guidelines helping to determine the elements
(for instance, agents and interactions) that form the MAS. These guidelines are also
helpful to the experts in MAS development. They will be able to transmit their ex-
perience to other users through explaining why and how they have obtained the dif-
ferent elements of the agent-based application. In addition, Prometheus is also useful
because it explicitly considers agent perceptions and actions as modeling elements. In
robotics, percepts are environment data collected by several robot sensors (tempera-
ture, light, distance, etc) and actions represent the control carried out by the robot
actuators (motors, LEDs, and so on). Lastly, the use of plans also seems a good fit for
developing robotic systems.

2 Overview of the Prometheus Methodology

Prometheus [11] is defined as proper detailed process to specify, implement and
test/debug agent-oriented software systems. It offers a set of detailed guidelines that
includes examples and heuristics, which provide a better understanding of what is
required in each step of the development. This process incorporates three phases.
The system specification phase identifies the basic goals and functionalities of the
system, develops the use case scenarios that illustrate its functioning, and specifies
which are the inputs (percepts) and outputs (actions). It obtains the analysis over-
view diagram, scenarios diagram, goal overview diagram, and system roles dia-
gram. The architectural design phase uses the outputs produced in the previous
phase to determine the agent types that exist in the system and how they interact. It
obtains the data coupling diagram, agent-role diagram, agent acquaintance diagram,
and system overview diagram. The detailed design phase focuses on developing the
internal structure of each agent and how each agent will perform its tasks within the
global system. It obtains agent overview and capability overview diagrams. Finally,
Prometheus details how the entities obtained during the design are transformed into
the concepts used in a specific agent-oriented programming language (JACK). The
design process for Prometheus methodology is supported by Prometheus Design
Tool (PDT) [15].

82 J.M. Gascueña and A. Fernández-Caballero

3 System Specification

The process to detect and follow moving objects using the robot is described next.
The robot is moving randomly around the environment while the images collected
are shown to the guard (state wandering). After some elapsed time (Timer_P) the
robot stops in order to analyze the images captured in that instant (state detecting).
After that, if movement has been detected, (1) information about the detected blob is
obtained, and, (2) the guard is warned to decide if the robot should follow the blob or
not. The process to follow persons is started (state following) if he chooses to follow
it (Follow_P). When the robot is wandering, the guard may perceive that something
is moving in the environment, according to the images displayed on his interface. In
that case, the guard orders (Detect_P) that the images are analyzed to check if there
is or not movement. If the image analysis does not detect movement, then the robot
goes on moving randomly. In order to achieve tracking an object correctly (state
following) the images are captured, displayed, and analyzed continuously in order to
obtain blob information. The object is followed until the tracking phase finishes.
This condition can be satisfied by three different reasons: (1) the guard has decided
not to continue to follow the target (Follow stop_P), (2) the target is out of the field
of vision, or, (3) it is impossible to follow it because some physical inaccessibility is
encountered in the environment (for example, the target takes a staircase). After that,
the robot wanders again.

Usually, the System Specification phase begins with the analysis overview dia-
gram, which shows the interactions between the system and the environment (see
Fig. 1). An actor is an external entity – human or software/hardware – that interacts
with the system. At this level, firstly, an actor for each device mounted on the robot
(sonar, bumpers, camera, and wheels) has been identified; there is also a Guard_A
actor to represent a human that interacts with the system, and a Timer_A actor which
submits time percepts (Timer_P) to the system. There are two scenarios (Motion de-
tection scenario and Object following scenario) that correspond to the main require-
ments of the system, and another scenario (Start system scenario) to represent the
robot components initialization process. Secondly, the information that comes into the
system from the environment has been identified (percepts). It corresponds to impacts
detected by the bumper device (Collision_P), images captured by the camera (Im-
age_P), distance to obstacles/targets perceived by the sonar (Distance_P), and orders
issued by the guard to control the change of the system state (Detect_P, Follow_P,
Follow stop_P). On the other hand, everything produced on the actors by the system
is also identified (actions). It corresponds to the camera movements carried out based
on the tilt, pan and zoom parameters provided (Set camera focus_a), commands to
control wheel motion (Set direction_a, Stop,_a, Move_a), and an action Show im-
ages_a to show the images captured. Show results_a also highlights with a square the
image regions where movement has been detected.

Scenarios are specified in more detail in a scenario diagram. A scenario is a se-
quence of structured steps – labeled as action (A), percept (P), goal (G), or other sce-
nario (S) – that represents a possible execution way of the system. As an example,
Object following scenario begins with the order given by the guard in order to follow
the blob detected (step 1, P). Then, images are captured (step 2, G) and analyzed

 Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans 83

Fig. 1. Analysis Overview Diagram

(step 3, G), information about the blob to be followed is gotten (step 4, G), and analy-
sis results are displayed (step 5, A). Based on this information, the robot is oriented to
follow the object (step 6, A) and moves towards it (step 7, A). The scenario returns to
step 2 until the guard orders to stop object following (step 8, G). The tracking phase is
finished when the goal Finish following is achieved (step 9, G).

In our MAS approach, several agents communicate and coordinate to pursue the
Environment surveillance common goal. A goal is associated for every scenario in
order to represent the goal that the scenario is intended to achieve. So, in goal over-
view diagram there are three goals (Object following, Movement detection, and Start
system) related to the scenarios identified (Object following scenario, Motion detec-
tion scenario and Start system scenario, respectively). And they contribute to satisfy
the common parent goal Environment surveillance. Likewise other goals, they are
also decomposed into several sub-goals to denote how to achieve each parent goal.
Detection and following processes use information provided by the sonar (to avoid
obstacles), the bumper (to control collisions), the guard, the information captured by
the camera, and perform commands on the wheels (to move robot). So, there are
common sub-goals to accomplish Movement detection and Object following goals.

The roles are identified by clustering goals and linking perceptions and actions (see
Fig. 2). Start System_R role handles the guard’s request to start the robot devices.
Control Collision_R role is responsible for achieving Control Collision goal, for
which it needs inputs detected by the physical bumper device. Observe environment
sonar_R uses the sonar to perceive distances to obstacles in order to avoid them.
Management guard order_R aims to meet the guard’s orders to control the system
operation, which has already been started. These orders correspond to perceptions that
allow to start/stop the tracking phase (Follow_P, Stop follow_P), and to analyze the
images (Detect_P). Wander_R objective is to control the robot "wandering" process.
It consists in randomly moving the robot around the environment, avoiding obstacles

84 J.M. Gascueña and A. Fernández-Caballero

Fig. 2. System Roles Diagram

and controlling situations when a collision has been detected. Follow_R is responsible
for controlling the robot's movement when the system is following an object. Fol-
low_R/Wander_R roles do not include perceptions from the environment or actions on
the environment, but as it will be described later on, it uses information obtained from
physical sensors different from the camera, and therefore they need to "communicate"
with the roles responsible for achieving Follow object/Wander sub-goals (Avoid ob-
stacle, Move robot, Control collision). Detect_R is responsible for the goals of analyz-
ing images captured by the camera, getting information from the detected moving
blob, and performing an action to display results to the guard. Capture Image_R per-
ceives images from the environment (Image_P percept), and moves the camera to set
the camera focus (Set_focus_a action) to capture images in an optimum way (Capture
image goal). Show Image_R is responsible for displaying the camera field of view to
the guard. To satisfy this goal, Show Image_a action is executed when no movement
is detected. Motion_R uses wheels to move the robot around the area (Move robot
goal). This is controlled by actions that allow to stop, move and set the motion direc-
tion of the robot (Stop_a, Move_a; Set motion direction_a).

It has been shown in previous descriptions that there are entities, such as goals,
which appear in several diagrams. This means that updating some diagram may lead
to the need of updating another diagram when taking an iterative approach.

4 Architectural Design

One task carried out in this phase is to decide the agent types (as collections of roles).
This is drawn in the agent-role grouping diagram. In our case we have grouped (1) Start
System_R and Management guard order_R roles into Central agent, (2) Wander_R and
Follow_R roles into Motion Manager agent, and, (3) Show image_R and Detect_R roles
into Image Manager agent. Finally, Control Collision_R, Observe environment so-
nar_R, Motion_R, Capture Image_R roles are related with Bumper, Sonar, Wheels, and

 Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans 85

Fig. 3. System Overview Diagram

Camera agents, respectively. An agent is responsible for the functionalities – roles –
related. Once roles have been grouped into agents, information about percepts and ac-
tions related to roles, depicted in system roles diagram, it is automatically propagated
and linked with the agents in the system overview diagram (see Fig 3).

Once the agents have been identified, the next task is to define agent conversations
(interaction protocols - IP) in order to describe what should happen to realize the
specified goals and scenarios. Fig. 3 shows the system overview diagram for our sys-
tem design. Initialize_IP means that there are communications between Central, Mo-
tion Manager, Image Manager, Sonar and Camera agents when the system is started
for activating the sonar and setting the camera initial parameters. Bumper_IP specifies
interactions between agents (Bumper, Motion Manager and Wheels), and between
agents and environment through Bumper_A and Wheels_A actors, which occurs when
the robot collides with something – the robot should stop and establish a new direc-
tion, denoted by actions, in order to continue moving. When the Bumper agent
perceives that there has been a collision, there is a communication with the Motion
Manager agent through Collision_M message. Then, the Motion Manager agent sends
messages to the Wheels agent to execute the actions mentioned. Collisions occur be-
cause the sonar has not been able to detect an obstacle on time. Sonar_IP includes
messages exchanged between Sonar, Motion Manager and Wheels agents as a result
of using information provided by the physical device sonar (it measures the distance
from an obstacle to the robot). In this protocol, the Wheels agent also executes actions
to stop the robot and to orient it towards a new direction when the sonar device de-
tects an obstacle. Wheels_IP represents the possible messages sent from the Motion
Manager agent to the Wheels agent in order to execute an action on the robot’s
wheels. Central_IP contains messages sent from the Central agent to manager agents
(Motion Manager and Image Manager) to monitor the robot's state (wandering,

86 J.M. Gascueña and A. Fernández-Caballero

Fig. 4. Camara Protocol Diagram

following, detecting) according to the orders provided by the guard (Detect_P, Fol-
low_P, Follow stop_P percepts) or end of a time slice (Timer_P percept). Wander_M
message is sent to the Motion Manager, and it includes ‘start_wander’, ‘con-
tinue_wander’ or ‘stop_wander’ value to control the wandering state. The same idea
is used with Follow_M and Detect_M messages sent to the Motion Manager and the
Image Manager, respectively.

Finally, Fig. 4 details the Camera_IP interaction protocol internal structure, where
interactions involve three agents and two actors (identified by the dotted squares in
the diagram). As we can notice, the interaction with the environment is carried out by
actors (percepts originated by an actor and going to an agent, whereas actions go from
an agent to an actor). Firstly, Camera_A actor sends Image_P percept, which contains
the captured frame to Camera agent. This agent sends the information perceived to
Image Manager agent through Image_M message in order to determine if there is
motion or not (these options are represented by using an alternative box). If the Image
Manager evaluates that there is no motion, then it shows the image on the graphical
guard interface using Show images_a action. Otherwise, it shows an image with a
frame on the detected moving blob using Show results_a action, and an optional box
(opt) will be executed if [yRel <.20] is satisfied. yRel is calculated by Motion Man-
ager, only when some object is being followed. This optional box means that the
Motion Manager agent sends an Inclination_M message to the Camera agent. Next,
the Camera agent executes Set focus_a action using information about new camera
focus contained in the message received. Camera agent is continuously receiving
images captured by the A_Camera actor. This is modeled with Camera agent sending
to itself an idle Capture image_M message, so a new image is captured.

The agent acquaintance diagram contains communication links between agents. It
is automatically generated from information messages included in the interaction
protocols. In short, there is a hierarchical communication between agents. Central
sends messages to Motion Manager and Image Manager depending on the robot's
state. The Motion Manager sends messages to Camera and Wheels agents in order to
move robot mobile components. Moreover, it receives messages from the Bumper and

 Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans 87

Sonar agents with the information they have collected. Image Manager receives mes-
sages from Camera agent with images perceived in order to detect if there is motion
or just to show them.

5 Detailed Design

In this phase, the internal details of each agent are specified in a way that is consistent
with its related roles and the interface that has been specified with both the environ-
ment (percepts and actions) and other agents (messages). This section only shows the
Motion Manager agent internal structure (see Fig. 5) as an example. This agent is
responsible for handling the movement of the robot's mobile components (camera and
wheels). It pursues Wander and Follow object goals related to the roles associated. In
order to satisfy these goals it is necessary to achieve Avoid obstacle, Move robot,
Control collision sub-goals, which are pursued by Sonar, Wheels, and Bumper agents,
respectively. Thus, the Motion Manager agent has a communication with these
agents. Start sonar_p plan is triggered (this is denoted with a dashed arrow) by Con-
trol sonar_M message sent by Central agent. It sends Activate sonar_M message to
Sonar agent in order to start perceiving distance measures. After that, it sends an Ana-
lyze sonar_M message to itself, which triggers the Control sonar_p plan. Once the
sonar has been activated, Store sonar percept_p plan updates continuously Buffer
sonar_D data with information received within the Distance_M message sent by So-
nar agent. Control sonar_p plan sends Stop_M message to Wheels agent in order to
stop the robot when the obstacle detected by the sonar device is in the robot advance
direction. After that, New direction_M message is sent (this contains new robot’s
direction and velocity) to Wheels agent according to the reading made on the data
represented with a cylindrical shape. Wandering_D and Following_D are Boolean
data that contain whether the robot is in state wandering and following, respectively.
Blob_D data is used to calculate the new direction that the robot should take when it
is following an object. Finally, it sends itself an Analyze sonar_M message in order to
continuously execute the process that controls the sonar information. Control colli-
sion_p plan is triggered by Collision_M message, which is sent by the Bumper agent
when a collision has been perceived. To ensure robot's progress, this plan uses an
algorithm similar to the one used in Control sonar_p plan.

Moreover, a capability has been created for each role related to this agent. The
wandering process is executed in Wandering_p plan included within Wandering_c
capability. It consists in setting a new random direction in a regular time slice. Wan-
dering_p is triggered by Wander_M message sent by Central agent (the message
contains ‘start wander’ or ‘stop wander’) or Motion Manager to continue the wander-
ing process (the message contains ‘continue wander’). The messages and data which
appear in Fig. 5 related to Follow_C capability are propagated automatically towards
the capability overview diagram for Follow_C depicted in Fig. 5b. Follow_p plan is
included within Follow_c capability. Follow_p plan determines the procedure used by
the robot to move through the environment when it is following an object. It can be
triggered for three different reasons: (1) Central agent sends a Follow_M message
that contains ‘start follow’ to begin the following process, (2) Central sends Fol-
low_M with information ‘stop follow’, which leads to send Stop_M and to finish the

88 J.M. Gascueña and A. Fernández-Caballero

Fig. 5. (a) Agent Overview Diagram for Motion Manager, (b) Capability Overview Diagram
for Follow_C

following process, and (3) Motion Manager agent sends itself a Follow_M message
that contains ‘continue follow’. Cases one and two use Blobs_D data (a) to determine
the robot’s direction and velocity, which are sent to the Wheels agent through New
direction_M message, and (b) to calculate the camera focus to continue detecting the
blob followed, and to send this information within Inclination_M message to Camera
agent. Each plan descriptor includes a procedure field where it is specified in an in-
formal way what the agent will execute.

6 Conclusions

A MAS approach using the detailed process provided by Prometheus methodology for
the design of a robotic application for the detection and following of humans has been
introduced in this paper. Traceability between the entities (concepts) identified along the
three phases of the Prometheus methodology has allowed progress in the robotic applica-
tion design. That is to say, the concepts identified in one phase are helpful in order to
identify new concepts that appear in other models of the same phase or another later
phase. It has been shown that Prometheus methodology can be used to model the behav-
ior of a single robot that incorporates several sensors. PDT allows automatic code genera-
tion from the design, and it can be imported by JACK Development Environment. In the
near future, we will try to show the suitability to use it into multi-robot systems.

Acknowledgments

This work is supported in part by the Spanish Ministerio de Ciencia e Innovación
TIN2007-67586-C02 grant, and the Junta de Comunidades de Castilla-La Mancha
PBI06-0099 grant.

 Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans 89

References

1. Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems develop-
ment. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006.
LNCS(LNAI), vol. 4457, pp. 38–61. Springer, Heidelberg (2007)

2. Chan, H.K., Ye, W., Lam, T.L., Ou, Y., Xu, Y.: Sensor System for a Human-Following
Robot. In: International Conference on Automation, Control and Applications, pp. 350–
355. Novosibirsk, Russia (2005)

3. Collinot, A., Drogoul, A., Benhamou, P.: Agent Oriented Design of a Soccer Robot Team.
In: 2nd International Conference on Multi-Agent Systems (ICMAS 1996), pp. 41–47
(1996)

4. Cossentino, M., Sabatucci, L., Chella, A.: A possible approach to the development of ro-
botic multi-agent systems. In: IEEE/WIC Conference on Intelligent Agent Technology
(IAT 2003), pp. 13–17 (2003)

5. DeLoach, S., Matson, E., Li, Y.: Applying Agent Oriented Software Engineering to Coop-
erative Robotics. In: 15th International Florida Artificial Intelligence Research Society
Conference, pp. 391–396 (2002)

6. Gascueña, J.M., Fernández-Caballero, A.: Towards an integrative methodology for devel-
oping multi-agent systems. In: 1st International Conference on Agents and Artificial Intel-
ligence, ICAART 2009 (2009)

7. Gockley, R., Forlizzi, J., Simmons, R.: Natural Person Following Behavior for Social Ro-
bots. In: ACM/IEEE International Conference on Human-Robot Interaction (HRI 2007),
pp. 17–24 (2007)

8. Inamura, T., Shibata, T., Matsumoto, Y., Inaba, M., Inoue, H.: Finding and following a
human based on on-line visual feature determination through discourse. In: International
Conference on Intelligent Robots and Systems (IROS), pp. 348–353 (1998)

9. Jiménez Builes, J.A., Vallejo Valencia, M., Ochoa Gómez, J.F.: Methodology for the
Analysis and Design of Multi-Agent Robotic Systems: MAD-Smart. Revista Avances en
Sistemas e Informática 4(2), 61–70 (2007)

10. Kobilarov, M., Hyams, J., Batavia, P., Sukhatme, G.S.: People tracking and following with
mobile robot using an omnidirectional camera and a laser. In: IEEE International Confer-
ence on Robotics and Automation, pp. 557–562 (2006)

11. Padgham, L., Winikoff, M.: Developing intelligent agents systems: A practical guide. John
Wiley and Sons, Chichester (2004)

12. Pavón, J., Gómez-Sanz, J.J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: Develop-
ment of intelligent multi-sensor surveillance systems with agents. Robotics and Autono-
mous Systems 55(12), 892–903 (2007)

13. Schlegel, C., Illmann, J., Jaberg, K., Schuster, M., Wörz, R.: Vision based person tracking
with a mobile robot. In: 9th British Machine Vision Conference (BMVC), pp. 418–427 (1998)

14. Sokolova, M.V., Fernández-Caballero, A.: Facilitating MAS complete life cycle through
the Protégé-Prometheus approach. In: Nguyen, N.T., Jo, G.S., Howlett, R.J., Jain, L.C.
(eds.) KES-AMSTA 2008. LNCS, vol. 4953, pp. 63–72. Springer, Heidelberg (2008)

15. Thangarajah, J., Padgham, L., Winikoff, M.: Prometheus Design Tool. In: 4th Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems, pp. 127–128 (2005)

16. Zivkovic, Z., Kröse, B.: People Detection Using Multiple Sensors on a Mobile Robot. In:
Unifying Perspectives in Computational and Robot Vision. Lecture Notes in Electrical
Engineering, pp. 25–39 (2008)

17. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The Knowledge
Engineering Review 10(2), 115–152 (1995)

	Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans
	Introduction
	Overview of the Prometheus Methodology
	System Specification
	Architectural Design
	Detailed Design
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

